IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 41 (2004) 365-384

Nonlinear dynamic analysis of composite laminated
plates containing spatially oriented short fibers

K.K. Shukla * Jhao-Ming Chen °, Jin H. Huang ®*

& Applied Mechanics Department, M.N.N.IL. T, Allahabad-04, India
b Department of Mechanical and Computer-Aided Engineering, Feng Chia University, 100 Wen-Hwa Road, Taichung 407, Taiwan

Received 14 April 2003; received in revised form 19 September 2003

Abstract

The paper presents an analytical approach to examine the nonlinear dynamic responses of a laminated composite
plate composed of spatially oriented short fibers in each layer of the composite. Using Mori-Tanaka mean field theory,
the effective elastic moduli of each lamina are obtained explicitly as a function of the properties of the constituents,
volume fraction, orientation angles, and fiber shape. The resulting moduli are further applied to analyze the nonlinear
transient response of the laminated plate. The formulation is based on Mindlin first-order shear deformation theory and
von-Karman nonlinear kinematics, and the methodology of the solution utilizes the fast converging finite double
Chebyshev series. Houbolt time marching scheme and quadratic extrapolation technique are used for the temporal
discretization and linearization, respectively. Numerical results are presented for laminated plates made of E-glass/
Epoxy fiber reinforced composites.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Fiber composite laminates have found many applications in variety of engineering structures ranging
from deep ocean to high in the sky and fiber architecture has been considered to be the most important
feature in the composite design. Optimum placement of the fibers depending upon the requirements is a
direct and efficient way to improve the composite performance under various conditions. Depending upon
the structural requirements, environmental and loading conditions, the orientations of the fibers in the
composites may be linear, planar, or spatial. Out of these, the composites containing spatially distributed
fibers are finding wide variety of applications due to their more balanced properties, which lead to an
improved through-the-thickness stiffness/strength. However, it is very difficult to control the movement of
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fibers in a perfect alignment and therefore there is a need of a probabilistic study on the orientation of
fibers in the composite. The fiber distribution in the composites can be represented by either a density
function or a cumulative function, which helps in computing the elastic constants of the composite
effectively.

Several approaches have been proposed for evaluating the effective elastic properties. Eshelby (1957)
proposed a method for evaluating effective elastic constants and it is quite reasonable when the fiber volume
fraction is small. Halpin et al. (1971) and Christensen and Malls (1972) proposed aggregate models for
irregular fiber orientation and these models predict elastic properties effectively when the volume fraction of
the fiber is significant. But, these models do not reflect the geometrical aspects of the inclusion. The method
proposed by Mori and Tanaka (1973) is supposed to be one of the most powerful methods for predicting
the overall behavior of the composite material containing nondilute concentration of inclusions. Taya and
Chou (1981) proposed a method for computing overall stiffness of a three-phase composite which are of
isotropic materials. Beveniste (1987) successfully applied the Mori-Tanaka method to investigate the stress
and strain concentration tensors and effective elastic moduli of a composite. Weng (1990) concluded that
the Mori-Tanaka method can be safely applied to obtain the elastic moduli of identical shaped multiphase
composite with inclusions. Based on Mori-Tanaka mean field theory, analytical expressions are presented
in the present paper for evaluation of effective moduli of composites reinforced with different orientations
of short fibers. A probability density function controlled by three Euler’s angles is introduced to simulate
spatial fiber orientation in a preferred direction.

The nonlinear dynamic behavior of the laminated composite plates/panels in response to the conditions
they are subjected to, have received considerable attention in the past. Some excellent reviews and
monographs on the vibrations of plates are presented by Sathyamoorthy (1987), Yamada and Irie (1987),
and Leissa (1998). A number of investigations have been carried out on the nonlinear dynamic analysis of
the laminated composite plates and notably among them are due to Reddy (1983), Bhimaraddi (1992), Shi
et al. (1997), Cheng et al. (1993), Khdeir and Reddy (1999), Singh and Rao (2000), Nath and Shukla (2001),
and many others. Huang (2001) presented a micromechanics based approach for the linear dynamic
analysis of laminated composite plate composed of randomly oriented fibers. From the available literatures,
it is evident that most of the studies are related to the nonlinear vibration analysis of the composite
laminated plates containing long fibers employing numerical techniques.

In the preset paper, nonlinear dynamic responses of composite laminated plates containing spatially
oriented short fibers are carried out analytically, employing fast converging finite double Chebyshev series.
A Chebyshev series always has the property of infinite order convergence even for the functions that are
nonperiodic and it eliminates the terminal discontinuities. It uses the global basis functions in which each
basis function is a polynomial of high degree, which is not zero, except for isolated points over the entire
computational domain (Rivilin, 1974). When fast iterative matrix solvers are used, this method can be
much more efficient than numerical techniques for several classes of problems. The effects of fiber orien-
tations, fiber aspect ratio, fiber volume fraction, and lamination scheme on the nonlinear dynamic re-
sponses of the composite laminated plate are studied. The numerical results for E-glass/Epoxy fiber
reinforced composite laminated plates with all edges clamped (CCCC) and two opposite edges clamped and
two simply supported (CCSS) are presented.

2. Mathematical formulation

The laminated composite rectangular plate made up of n layers with composites containing spatial short
fibers is shown in Fig. 1. Perfect bonding between the layers is assumed. Effective elastic properties of the
composites are evaluated employing the Mori-Tanaka mean field theory and the governing equations of
motion of the composite laminated plates are presented in the following subsections.



K. K. Shukla et al. | International Journal of Solids and Structures 41 (2004) 365-384 367

a
b h2
fibers i =x
7 2
CDOO =] (? o OO ) 0 Y
y kth layer

Y,

Fig. 1. Composite laminated plate containing random short fibers.

2.1. Effective elastic properties

For obtaining the effective properties of a reinforced composite, a sufficiently large two-phase composite
D consisting of randomly oriented spatial inhomogeneities Q (= Q; + Q, + - - - + Q) with elastic constants
Cizjmn and volume fraction f is considered. The surrounding matrix is denoted by D-Q and has elastic
constants C},,,. To deal with such a composite with randomly oriented spatial inclusions, the Mori-Tanaka
mean field theory is employed to predict the effective elastic moduli of the composite. An advantage of
using this theory is that the resulting moduli satisfy self-consistency, i.e., this theory generally yields the
same effective elastic moduli for the cases when either a traction or displacement field is prescribed on the
boundary of the composite (Huang and Kuo, 1996). Consequently, the estimation of effective elastic moduli
can be carried out independently of the far field boundary conditions. This is strongly desirable from
physical viewpoint.

Considering the case where the displacement at the boundary of a composite body D is prescribed, so
that the uniform strain ¢’ is given. In the absence of the inhomogeneities, the prescribed strain produces
the uniform stress, a?/.. When a large number of inhomogeneities are introduced into D, the strain changes
to s?nn + &m, and the stress to ag. + o;;. Here ¢, denotes the disturbed strain, and ¢;; stands for the disturbed
stress. The averages of these quantities are expressed by (&,,),, and (&,,), for the matrix and the inhomo-
geneities, respectively. Since the surface strain is prescribed, the volume average of the disturbed strain must
vanish, which yields

(1= f)emn)ar + S (&mn)g = 0 ()

The presence of a large number of the inhomogeneities ensures that the addition of a new inhomogeneity
does not change (&,,),, and (&,,),. Thus, an inhomogeneity £ is inserted into a region where the insertion
is allowed. The strain in Q; consists of two parts. The first part is the strain (g,,),,, which have existed
before the insertion. The second part is the strain ¢,, in the inserted inhomogeneity, calculated only when
this inhomogeneity is present. Thus, the sum of the first and second parts, in €, becomes

(emn) g, = (&mn)as + Emn 2)
Then, the average of the disturbed stress in the matrix and the kth inhomogeneity are respectively written as
<O-if>M = Ciljmnsmn (3)
<Gij>9k = Cizjmn(<8m">M + &mn) (4)

where superscripts 1 and 2 denote for the matrix and inclusions, respectively.



368 K. K. Shukla et al. | International Journal of Solids and Structures 41 (2004) 365-384

Since the composite is subjected to the uniform far-field strain &’

> the average stress in the kth inho-
mogeneity can be expressed as

0?/ + <O—fj>9k =C;, (Egm + <8mn>M + gmn) (5)

ijmn

By means of the equivalent method (Eshelby, 1957), the stress in the inhomogeneity can be simulated by
those in an equivalent inclusion with the elastic constants of the matrix and a fictitious eigenstrain &'

(Mura, 1987). Hence, Eq. (5) can be rewritten as
O-?j + <O-fj>Qk - Cizjmn(89nn + <8m”>M + Smﬂ)
= Ci]jmn (S?nn + <8m”>M + Emn — 8::'m)

(6)

Since the applied load is uniform and the inhomogeneity is spatial, the disturbed strain ¢, in the preceding
equation can be related to the fictitious eigenstrain & _ by

mn

Emn = Smnaby (7)
with S,,..» being the Eshelby tensors (Mura, 1987). With the aid of Egs. (6) and (7), it is written as

(&mn) g, = (&mn)as + Smnav&a (8)
Substituting Eq. (8) into (1), the average strain in the matrix is written as

(emn) s = —Smnavtsy )
The equivalent eigenstrain ¢!, solved by substitution of Egs. (8) and (9) into the equivalent condition (6) is

e = Vs (Coinn = Chinn) oot (10)
where I{l;i‘j. is the inverse of Vj,, defined by

Viar = (1= F)(CLy, = Ch) S + Chy (1)

Since all inhomogeneities are of the same shape with the same material properties, the average of equivalent
eigenstrain ¢ in € is the same as that over Q. Consequently, the average value over € is identical with
that over @, namely, () o= (€mn)q- Then, the overall stress (g;;) of the composite by averaging those of
the inhomogeneities and the matrix is defined as

(0i)c = (’?/ + (1 =)o)y + f(04)q (12)
Substituting Eqgs. (3), (4) and (7)~(9) into (12), yields

(@ide = Comn(En, — fE,) (13)
Furthermore, several steps of manipulation the Eq. (13) reduces to

(@) = Ciimnm, (14)

where the effective elastic moduli C;;,,, are obtained as
CU’"" = Ciljab Iab’"” + ﬂ/a;;; (ermn - C;Jmn):| (15)

The above results are based upon the assumption that the principal axes of the inhomogeneity coincide with
the crystalline directions of the matrix (Huang and Kuo, 1996). For a spatially oriented inclusion in a
generally anisotropic medium, its orientation can be described by three Euler angles 0, ¢ and w as depicted
in Fig. 2. Suppose that u;, u, and u; are the unit vectors in the (x, y,z) coordinates and u;, u, and u; are the
unit vectors in the (X,7,z) coordinates, respectively. The overbar denotes quantities associated with the
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Fig. 2. Representation of Euler angles.

principal directions (X,7,Z) of the inclusion. The relations between these two sets of unit vectors can be
expressed as

l_l1 U
oy =D< w (16)
u3 u3

where [A] is the direction cosine matrix. According to the above definition of the rotational angles, the
matrix is then given by

mpr —ns  npr—+ms —qr
[\ = | —mps —nr mr—mnps gs (17)
mq nq p

where m = cos(6), n = sin(0), p = cos(¢), g = sin(¢), r = cos(w), and s = sin(w).
For a randomly oriented fiber reinforcement composite, the effective moduli depend on the fiber ori-
entation distribution and can be defined by the following integration

2npm p2n
E,-j-,,,,,:/o/o/0 Cijmn (0, ¢, 0)p(0, ¢, w)sin pdwde¢pdo (18)

where p(0, ¢, w) is the probability density function of the fibers and sin ¢ is to account for the surface area
of a sphere, and Cij, (0, ¢, ©) = A Aj12mprng Chipg-

If the fibers are uniformly distributed over the given region as shown in Fig. 3, then the probability
density function p(0, ¢, ®) is constant over the region and the corresponding distribution region is defined
by

—00 <0< 0y, §—¢0<¢<§+¢0, 0<w<2n (19)

where 0y and ¢, are prescribed values and w is given so that any fiber is free to rotate with respect to its
direction. Then, the corresponding density function is found to be

1

p(0, ¢, w) = 8720, sin g (20)
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Fig. 3. Fiber distributions in a preferred direction.

Thus, Eq. (18) becomes

1 2npm 21':_ )
Eijmnzm/o/o/o ijmn(0,¢aw) sin pdwd¢ do (21)

The explicit result of the integration in Eq. (21) can be obtained for any given 0y, ¢,, and w,, since the
solution for the effective elastic moduli Cy,,(0, ¢, w) of the composite can be obtained explicitly.

Three special cases of fiber orientations are considered in the present study and they are

Case 1: 0y — 0 and ¢, — 0. It represents the special case in which all fibers are aligned and parallel to the
x axis and fibers are free to rotate only with respect to three axial directions. The nonzero terms are

Cy +Cp, . =
— 5 Ep=E;3=Cp (22)

Eyy=Cy, Es=Ce, Ess=Eg=Cu

Ey=Eyn, Ep=

It can be shown that the composite includes only five independent elastic constants. This implies that
yz-plane is the plane of isotropy and the composite is macroscopically homogeneous and transversely
isotropic.

Case 2: 0y = m and ¢, — 0. It represents the case in which the fibers are uniformly lying in the xy-plane
and it is therefore a two dimensional in-plane distribution. The nonzero terms are

1— 1— 1 — 1
Eny=Ep=Ey =§C11 +§C33—§H7 Ep=Cy +§H

Cus + Ces (23)

1— 1—
Epy=E3=zCi3+zCpn, Eyu=Es= >

2 2

1— 1
E¢w==C -H
66 =5 44+8
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where H = Cy; + C33 — 2Ca3 — 4Cy. It can be readily shown that xy-plane is the plane of isotropy and the
composite is transversely isotropic with respect to z axis.

Case 3: 0y =m and ¢, — 5. It represents the case in which fibers are uniformly distributed in all
directions, which may be termed as completely random distribution. The composite behavior should be
independent of direction or the composite is isotropic. The nonzero terms are

1 — — 2
E\W=Ep=Eu=-(2C1+Cy)——<H
3 15
1 — — 1
Epn=E3=Ej3= 3(2C13 +Cp2) + EH (24)
1 — — 1
Ey = Ess = Eg = §(2C44 + Co) + EH

Due to symmetric distribution of fiber orientation, the composite as a whole is macroscopically isotropic.
2.2. Equations of motion

Employing the first-order shear deformation theory, the displacement field at a point in the composite
laminated plate is expressed as

U(x7y> = uO(xvy) +ZHX<xvy)
V(x,y) = volx,y) +20,(x, ) (25)
W(X,y) = WO(xvy)

where uy(x, ), vo(x,»), wo(x,y) are the displacement at a point on the mid-plane of the plate, and 0, (x,y),

0,(x,y) are the rotations of xz and yz planes, respectively. The strain displacement relations due to von-
Karman nonlinear kinematics are given as

£=¢g) +2K (26)
where

£ = [8)5 &y ny ’)))a Yz ]T

& = 8}) + 831

82) =[uox Voy Uoy+Vox Woyt lpy Wos + Y, }T @7)
T

881 = %(WO,X)Z %(WO,V)Z Wo.Wo, 0 O}

K= [lpx‘x lpyy lpx‘y + lpy‘x 0 O]T

where superscripts 1 and nl stands for linear and nonlinear, respectively.

The fiber reinforced composite plate with n layers is assumed to be rectangular with dimensions a, b, and
total thickness 4. The origin of the coordinates is at the center of the plate. The constitutive equation for an
orthotropic lamina with plane stress condition and transverse shear is given by

O Ey En Eg 0 0 &
gy En Eyn Ey 0 0 &y
Ty 0= | Eis Ex Eg 0 0 Vay (28)
T) 0 0 0 Eu Ess Ve

Txz 0 0 0 E45 E55 Vxz
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The force and moment resultants of a composite laminated plate made up of » layers of orthotropic lamina
are expressed as

N, An A A Bu Bn B Uo x +%(W0,x)2

N, A An Ax B Bn By Vo, + 1 (wo,)

Ny \ _ |46 A Aes Bis B Bes Ug,y + Vox + WoWo, (29)
M, B B Bis Dun Din Dis Vex

M, Biy By By Din Dxn Dy v,

M, Bis By Bss Dis Dix Des Vo + Wy

O | _ |Au A V)
{9 -Ta 2 )

The laminate stiffness coefficients (4;;, B;;, D;;) in terms of the reduced stiffness coefficients (E;;), given in
Eq. (21), for the layers £ = 1,2, ..., n, are defined as

n Zk
(4, By, Dyj) :Z/ (1,2,22)(Ey), dz (i,j=1,2,6) (31)
k=1 Y Zk-1

Zkk/ (Ey) dz (i,j=4,5) (32)
where k7 =2 and k3 =2 are shear correction factors.
Using the Hamilton’s principle, the equations of motion of the plate subjected to transient loading can be
derived and are compactly expressed in nondimensional form as

(L, +Ly+L)d+p=L,d (33)
where

L, =La o 22 + Lo 6622 + L a@; + La4aa + Las ij + Lus

L, = Ly 66_:2 + L 6622 + L3 % »

d=[u v w Y, lpy]T
p=[0 0 ¢ 0 0]

The 5x5 matrices L,;, Ly, L., Ly, and L, appearing in the preceding equations are given in Appendix A.
2.3. Boundary conditions

The clamped or simply supported boundary conditions at the edges of the plate are expressed as
Clamped (C): Atx=-—a/2anda/2, u=v=w=y, =y, =0
Aty=-b/2and b/2, u=v=w=y, =y, =0
Simply supported (S): Atx= —a/2anda/2, u=v=w=M, = np =
Aty=—-b/2and b/2, u=v=w=y, =M, =

X

-

‘<:
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3. Method of solution

A general function ¢(x,y) is approximated in space domain by finite degree Chebyshev polynomials
(Shukla and Nath, 2000) as

Px,y) =0 Z Z 0, T:(¥) T;(») (35)
where

0=025 ifi=0and j=0
0=05 ifi=0and;j#0 or i#0and;j=0
o=1 otherwise

The spatial derivative of a general function ¢(x,y) can be expressed as

S
=

—r

¢y =9 @5 () T;(») (36)

i J

—S

Il
=}
Il
=}

where » and s are the order of derivatives with respect to x and y, respectively. Using the recurrence relations
(Fox and Parker, 1968), the derivative function ¢ is evaluated as
rs rs . (r—=Ds

Pli-n); = Py T 2"”51' ) (37)
rs rs . r(s—1
(Pii/fl) = (P[E/Jrl) + 2]401; :
The displacement functions and their derivatives can be approximated by finite degree Chebyshev poly-
nomials using Egs. (35)—(37).

The nonlinear terms appearing in the equations of the motion of the plate due to the product of the
dependent variables are linearized at any step of marching variable using quadratic extrapolation tech-
nique. A typical nonlinear function G(x,y) at step J is expressed as

M—-r N M N-—s
G =15) Z(pf,Tf(x)T_f(y)] x [é Y o TET0) (38)
i=0 ;=0 J i=0 j= 7
where
(q)ij).l = ’71(‘Pij),171 + '72((01'/').172 + 713((/71;/)./73 (39)

During initial steps of marching variables, the coefficients #,, #,, and 5, of the quadratic extrapolation
scheme of linearization take the following values

J=1:m=1n=0mn=0
J=2:m=2n,=—-1,13=0
JZ3:im=3m=-3n=1

Several implicit and explicit schemes of time marching have been used for analyzing dynamic problems. The
most common implicit schemes are: Houbolt, Newmark-f, and Wilson-8. Stricklin et al. (1971) have re-
ported that Houbolt scheme is considered to be best in few studies and Johnson (1966) has shown that it is
unconditionally stable for linear problems. However, the Houbolt scheme contaminate the results by arti-
ficial damping (Bathe and Wilson, 1976). In the present study, Houbolt implicit time marching scheme
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(Houbolt, 1950) is employed to evaluate the inertia terms Lp& in the governing equations of motion. At time
step J, the general acceleration (¢ ,,), is evaluated as

(@), = (Br@s + Pros 1 + B30; 5 + sy 5 + Bs)/(AT%) (40)

where 7 is the nondimensional time period and the Houbolt coefficients f5,’s for step loading at different time
steps are given as

By =6,p,=0,p,=0,8,=0,ps = —20Ac*> forJ =1

Bl:27ﬂ2:_47ﬁ3:O;ﬁ4:07ﬁ5:_QAT2 forJ =2

ﬁl :27ﬁ2: _57ﬁ3 :47ﬁ4 :O,ﬂs =0 forJ=3

ﬁl :27ﬂ2 = _57ﬁ3 :4aﬁ4 = _laﬁs =0 forJ = 3

The displacement functions and loading can be approximated by finite degree Chebyshev polynomials as

in Eq. (35) and substituting them into Eq. (33) and using the Eqgs. (36)—(40), the nonlinear differential
equations are linearized and discretized in space and time domain. In the present study total linearization
by evaluating the nonlinear terms at each step of marching variable and adding them to the load vector is

adopted. Thus the nonlinear differential equation is converted into a system of linear algebraic equations,
which are expressed as

M-2 N=2

Z F}c(uijvUijawi/'vwxij»lp}ijvpi/)y}(x)T/(y) =0 (k=1,5) (41)

i J

=

Il
o

Similarly the appropriate boundary conditions are discretized.

The total number of unknown coefficients is S(M + 1)(N + 1). Collocating the zeroes of Chebyshev
polynomials, 5(M — 1)(N — 1) algebraic equations are generated from Eq. (41). Similarly the CCCC (all
edges clamed) and CCSS (two opposite edges clamped and two simply supported) boundary conditions
generates (10M + 10N + 20), (10M + 10N + 18) algebraic equations, respectively. Total number of equa-
tions become 5(M + 1)(N + 1) +20 and 5(M + 1)(N + 1) + 18 for CCCC and CCSS boundary conditions,
respectively, which are more than the number of unknown coefficients to be evaluated. The system of linear
equations is written in matrix form as

Ad=p (42)

To ensure the uniqueness of the solution of Eq. (42) multiple regression analysis based on least square error
norm is carried out. Finally, the system of linear equations is expressed in matrix form as

d=(ATA)'ATp (43)

The coefficients of the displacement vectors are evaluated at each step and from which using Eq. (35) the
displacement at any point in the plate is computed.

4. Results and discussion

In the present study, the nonlinear governing equations of motion of composite laminated rectangular
plates containing spatially oriented short fibers and subjected to time dependent uniform transverse loading
are solved using the fast converging double Chebyshev polynomials and Houbolt time marching scheme. In
order to have a check on the accuracy and stability of the present methodology of the solution, spatial and
temporal convergence studies are carried and are shown in Figs. 4 and 5, respectively. It is found that nine
terms expansion of the variables in Chebyshev series and an increment of 0.1 for nondimensional time 7 are
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Fig. 4. Spatial convergence of the transverse central displacement of [0/90/0/90] CCCC plate (az/a; =4, f = 0.1, =120, Case 1,
At =0.1).

Wc

T

Fig. 5. Temporal convergence of the transverse central displacement of [0/90/0/90] CCCC plate (a3/a; =4, f = 0.1, f = 120, Case 1).

sufficient to yield satisfactory results. An iterative approach with relative convergence criteria of 0.01% of
each coefficient at every iteration across each step is employed. The present methodology is also validated
by comparing the plate center displacement (#,) and moment of a thin isotropic simply supported plate
under uniform transverse dynamic loading presented by Akay (1980) using the finite element method and
shown in Table 1. It is observed that the results are in good comparison.

The numerical results for E-glass/Epoxy fiber reinforced laminates are presented. The elastic properties
used for the calculations are C|, = 8.23 GPa, C}, = 4.24 GPa, v! = 0.34 for epoxy matrix, and C;, = 83.34
GPa, C?, = 23.51 GPa, v* = 0.22 for E-glass fibers. It is assumed that all layers of the laminated plate have
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Table 1
Comparison of central deflection and moment of thin isotropic plate (a = 243.8 cm, & = 0.635 cm, v = 0.25; £ = 7.031 x 10° kg/cm?,
p =2.547 x 107 kgs*/cm?, g(x,y,t) = 4.882 x 107 kg/em?)

Load level Center
W, (Max) (cm) M, (Max) (kgcm/cm)
Present Akay (1980) Present Akay (1980)
q 0.5781 0.6014 1.9248 1.9704
S5q 1.2139 1.2607 3.7885 3.6149
10g 1.6694 1.6337 5.7436 5.4295

the same thickness and fiber volume fraction. The nondimensional uniform step load Q = 50 is taken in the
study for all the cases. The nonlinear dynamic responses of composite cross-ply and angle-ply laminated
plates with spatially oriented short fibers are presented for different fiber volume fraction, fiber aspect ratio,
and fiber orientation in the composites.

Figs. 6-9 show the effect of fiber orientation on the central displacement (/) response of four layers
antisymmetric cross-ply [0/90/0/90], symmetric cross-ply [0/90/90/0], antisymmetric angle-ply [45/—45/45/
—45], and unsymmetric [0/15/30/45] laminated plates with fiber volume fraction f = 0.1 and fiber aspect
ratio as/a; = 4, respectively. It is observed that maximum peak transverse central deflection is lowest for
fiber orientation Case 3, when the fibers are completely randomly distributed for all the four laminated
composite plates. For fiber orientation Cases 1 and 2, it is almost same. The effect of uniform distribution of
the fibers in the composites on the nonlinear dynamic response is more than other fiber distributions.

The effect of fiber aspect ratio (a3/a;) on the nonlinear displacement response of a four layers anti-
symmetric cross-ply laminated CCCC square plate with fiber volume fraction f = 0.1, fiber orientation
Case 1 and plate span to thickness ratio (= a/h) = 40 is shown in Fig. 10. It is observed that with increase
in the fiber aspect ratio the resistance of the composite plate against transient loading increases and the
amplitude of the motion of the plate is least for composite containing long fibers (a3 /a; = 32) and highest
for composite containing short fibers (a3/a; = 2). However, the displacement responses corresponding to

CCCC, a3/a1=4, f=0.1,0/90/0/90

Casel
e Case2

10

0.8

0.6

0.4

Wc

0.2

0 20 40 60 80

Fig. 6. Effect of fiber orientation on the dynamic response of four layers antisymmetric cross-ply CCCC plate (a3/a; =4, f = 0.1,
B = 20).
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Fig. 8. Effect of fiber orientation on the dynamic response of four layers antisymmetric angle-ply [45/-45/45/-45] CCCC plate
(a3/a1 =4, f = 0.1, f = 40).

fiber aspect ratio 16 and 32 are almost same indicating that at this value of the fiber aspect ratio, the fibers
in the composites behave as long fibers.

Fig. 11 depicts the effect of fiber volume fraction in the fiber orientation Case 1 containing short fibers
(a3/a; = 4) on the dynamic response of the laminated composite [0/90/0/90] CCCC plate (a/h = 40). It is
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Fig. 9. Effect of fiber orientation on the dynamic response of four layers unsymmetrically laminated [0/15/30/45] CCSS plate (as/a; = 4,
f=0.1, p=20).
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Fig. 10. Effect of fiber aspect ratio on the dynamic response of four layers antisymmetric cross-ply CCCC plate (f = 0.1, = 40,
Case 1).

observed as expected that with increase in the fiber volume fraction the amplitude of the plate motion
decreases but the frequency of the motion remains almost same.

Fig. 12 reveals that the effect of lamination scheme in case of composite laminated plate containing short
fibers with fiber volume fraction f = 0.1 and fiber orientation Case 1 on the nonlinear displacement re-
sponse of the CCSS square plate (a/h = 20). It is observed that maximum peak displacement and frequency
of the motion is almost same for cross-ply and angle-ply symmetric, antisymmetric and unsymmetric
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Fig. 11. Effect of fiber volume fraction on the dynamic response of four layers antisymmetric cross-ply CCCC plate (a3 /a; = 4, f = 40,

Case 1).
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Fig. 12. Effect of lamination scheme on the dynamic response of CCSS plate (a3/a; =4, f = 0.1, f = 20, Case 1).

laminated plates. The lamination scheme does not affect the displacement response in case of composite
with short fibers aligned such that the composite is macroscopically homogeneous and transversely iso-

tropic.

Fig. 13 shows the effect of plate span to thickness ratio on the transient displacement response of the [0/
90/0/90] CCCC plate with short fibers aligned and parallel to the x axis which are free to rotate only with
respect to three axial directions. As in the case of composites with long fibers, the frequency of the motion
increases with decrease in the plate span to thickness ratio. However, the amplitude remains almost same.
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Fig. 13. Effect of plate thickness ratio a/h on the dynamic response of four layers antisymmetric cross-ply CCCC plate (a3/a; = 4,
f=0.1, Case 1).

5. Conclusions

The nonlinear dynamic responses for laminated composite plates composed of spatial short fibers
subjected to uniform transverse transient loading are obtained. It is observed that with increase in the short
fiber volume fraction, the amplitude decreases but the frequency does not change. It is also found that
amplitude of the motion is higher for short fibers and it decreases when the fibers in the composite are long.
The fibers orientation in the composites with spatial short fibers influence the response of the plate and it is
found that the maximum peak displacement of the plate is lower when the fibers are uniformly distributed
in the composites, i.e., completely random distribution of short fibers. However, no significant difference in
the displacement response is observed in case of symmetric, antisymmetric, unsymmetric cross-ply, and
angle-ply laminated plate with short fibers.
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Appendix A

The nondimensional parameters appearing in the governing equations are defined as

a a 2X 2Y
A =— = — e — =
b’ ﬁ h) X a? y b
U Do Wo = Nx.B
= — = = — N =
u R v R w b T
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The matrices defined in Eq

. (34) are expressed as follows
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where P, R, and [ are the normal, coupled normal rotary, and rotary inertia coefficients, respectively. They

are defined as

2
(pr1)= [ plz

The entries of the matrices L,;, Ly, L3, L1, Lo, and L are zero except
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2

L.(3,3) = ﬁzT {4 <W7x)2 + /121412(W,y)2 + 2416w Wy}
)
22 2, a2 2
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