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Abstract

The paper presents an analytical approach to examine the nonlinear dynamic responses of a laminated composite

plate composed of spatially oriented short fibers in each layer of the composite. Using Mori–Tanaka mean field theory,

the effective elastic moduli of each lamina are obtained explicitly as a function of the properties of the constituents,

volume fraction, orientation angles, and fiber shape. The resulting moduli are further applied to analyze the nonlinear

transient response of the laminated plate. The formulation is based on Mindlin first-order shear deformation theory and

von-Karman nonlinear kinematics, and the methodology of the solution utilizes the fast converging finite double

Chebyshev series. Houbolt time marching scheme and quadratic extrapolation technique are used for the temporal

discretization and linearization, respectively. Numerical results are presented for laminated plates made of E-glass/

Epoxy fiber reinforced composites.
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1. Introduction

Fiber composite laminates have found many applications in variety of engineering structures ranging

from deep ocean to high in the sky and fiber architecture has been considered to be the most important

feature in the composite design. Optimum placement of the fibers depending upon the requirements is a
direct and efficient way to improve the composite performance under various conditions. Depending upon

the structural requirements, environmental and loading conditions, the orientations of the fibers in the

composites may be linear, planar, or spatial. Out of these, the composites containing spatially distributed

fibers are finding wide variety of applications due to their more balanced properties, which lead to an

improved through-the-thickness stiffness/strength. However, it is very difficult to control the movement of
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fibers in a perfect alignment and therefore there is a need of a probabilistic study on the orientation of

fibers in the composite. The fiber distribution in the composites can be represented by either a density

function or a cumulative function, which helps in computing the elastic constants of the composite

effectively.
Several approaches have been proposed for evaluating the effective elastic properties. Eshelby (1957)

proposed a method for evaluating effective elastic constants and it is quite reasonable when the fiber volume

fraction is small. Halpin et al. (1971) and Christensen and Malls (1972) proposed aggregate models for

irregular fiber orientation and these models predict elastic properties effectively when the volume fraction of

the fiber is significant. But, these models do not reflect the geometrical aspects of the inclusion. The method

proposed by Mori and Tanaka (1973) is supposed to be one of the most powerful methods for predicting

the overall behavior of the composite material containing nondilute concentration of inclusions. Taya and

Chou (1981) proposed a method for computing overall stiffness of a three-phase composite which are of
isotropic materials. Beveniste (1987) successfully applied the Mori–Tanaka method to investigate the stress

and strain concentration tensors and effective elastic moduli of a composite. Weng (1990) concluded that

the Mori–Tanaka method can be safely applied to obtain the elastic moduli of identical shaped multiphase

composite with inclusions. Based on Mori–Tanaka mean field theory, analytical expressions are presented

in the present paper for evaluation of effective moduli of composites reinforced with different orientations

of short fibers. A probability density function controlled by three Euler�s angles is introduced to simulate

spatial fiber orientation in a preferred direction.

The nonlinear dynamic behavior of the laminated composite plates/panels in response to the conditions
they are subjected to, have received considerable attention in the past. Some excellent reviews and

monographs on the vibrations of plates are presented by Sathyamoorthy (1987), Yamada and Irie (1987),

and Leissa (1998). A number of investigations have been carried out on the nonlinear dynamic analysis of

the laminated composite plates and notably among them are due to Reddy (1983), Bhimaraddi (1992), Shi

et al. (1997), Cheng et al. (1993), Khdeir and Reddy (1999), Singh and Rao (2000), Nath and Shukla (2001),

and many others. Huang (2001) presented a micromechanics based approach for the linear dynamic

analysis of laminated composite plate composed of randomly oriented fibers. From the available literatures,

it is evident that most of the studies are related to the nonlinear vibration analysis of the composite
laminated plates containing long fibers employing numerical techniques.

In the preset paper, nonlinear dynamic responses of composite laminated plates containing spatially

oriented short fibers are carried out analytically, employing fast converging finite double Chebyshev series.

A Chebyshev series always has the property of infinite order convergence even for the functions that are

nonperiodic and it eliminates the terminal discontinuities. It uses the global basis functions in which each

basis function is a polynomial of high degree, which is not zero, except for isolated points over the entire

computational domain (Rivilin, 1974). When fast iterative matrix solvers are used, this method can be

much more efficient than numerical techniques for several classes of problems. The effects of fiber orien-
tations, fiber aspect ratio, fiber volume fraction, and lamination scheme on the nonlinear dynamic re-

sponses of the composite laminated plate are studied. The numerical results for E-glass/Epoxy fiber

reinforced composite laminated plates with all edges clamped (CCCC) and two opposite edges clamped and

two simply supported (CCSS) are presented.
2. Mathematical formulation

The laminated composite rectangular plate made up of n layers with composites containing spatial short

fibers is shown in Fig. 1. Perfect bonding between the layers is assumed. Effective elastic properties of the

composites are evaluated employing the Mori–Tanaka mean field theory and the governing equations of
motion of the composite laminated plates are presented in the following subsections.



Fig. 1. Composite laminated plate containing random short fibers.
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2.1. Effective elastic properties

For obtaining the effective properties of a reinforced composite, a sufficiently large two-phase composite

D consisting of randomly oriented spatial inhomogeneities X (¼X1 þ X2 þ � � � þ XN ) with elastic constants

C2
ijmn and volume fraction f is considered. The surrounding matrix is denoted by D–X and has elastic

constants C1
ijmn. To deal with such a composite with randomly oriented spatial inclusions, the Mori–Tanaka

mean field theory is employed to predict the effective elastic moduli of the composite. An advantage of

using this theory is that the resulting moduli satisfy self-consistency, i.e., this theory generally yields the

same effective elastic moduli for the cases when either a traction or displacement field is prescribed on the

boundary of the composite (Huang and Kuo, 1996). Consequently, the estimation of effective elastic moduli
can be carried out independently of the far field boundary conditions. This is strongly desirable from

physical viewpoint.

Considering the case where the displacement at the boundary of a composite body D is prescribed, so

that the uniform strain e0mn is given. In the absence of the inhomogeneities, the prescribed strain produces

the uniform stress, r0
ij. When a large number of inhomogeneities are introduced into D, the strain changes

to e0mn þ emn, and the stress to r0
ij þ rij. Here emn denotes the disturbed strain, and rij stands for the disturbed

stress. The averages of these quantities are expressed by hemniM and hemniX for the matrix and the inhomo-

geneities, respectively. Since the surface strain is prescribed, the volume average of the disturbed strain must
vanish, which yields
ð1� f ÞhemniM þ f hemniX ¼ 0 ð1Þ
The presence of a large number of the inhomogeneities ensures that the addition of a new inhomogeneity

does not change hemniM and hemniX. Thus, an inhomogeneity Xk is inserted into a region where the insertion

is allowed. The strain in Xk consists of two parts. The first part is the strain hemniM , which have existed

before the insertion. The second part is the strain emn in the inserted inhomogeneity, calculated only when

this inhomogeneity is present. Thus, the sum of the first and second parts, in Xk becomes
hemniXk
¼ hemniM þ emn ð2Þ
Then, the average of the disturbed stress in the matrix and the kth inhomogeneity are respectively written as
hrijiM ¼ C1
ijmnemn ð3Þ

hrijiXk
¼ C2

ijmnðhemniM þ emnÞ ð4Þ
where superscripts 1 and 2 denote for the matrix and inclusions, respectively.
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Since the composite is subjected to the uniform far-field strain e0mn, the average stress in the kth inho-

mogeneity can be expressed as
r0
ij þ hrijiXk

¼ C2
ijmnðe0mn þ hemniM þ emnÞ ð5Þ
By means of the equivalent method (Eshelby, 1957), the stress in the inhomogeneity can be simulated by
those in an equivalent inclusion with the elastic constants of the matrix and a fictitious eigenstrain e	mn
(Mura, 1987). Hence, Eq. (5) can be rewritten as
r0
ij þ hrijiXk

¼ C2
ijmnðe0mn þ hemniM þ emnÞ

¼ C1
ijmnðe0mn þ hemniM þ emn � e	mnÞ

ð6Þ
Since the applied load is uniform and the inhomogeneity is spatial, the disturbed strain emn in the preceding

equation can be related to the fictitious eigenstrain e	mn by
emn ¼ Smnabe	ab ð7Þ
with Smnab being the Eshelby tensors (Mura, 1987). With the aid of Eqs. (6) and (7), it is written as
hemniXk
¼ hemniM þ Smnabe	ab ð8Þ
Substituting Eq. (8) into (1), the average strain in the matrix is written as
hemniM ¼ �fSmnabe	ab ð9Þ
The equivalent eigenstrain e	mn solved by substitution of Eqs. (8) and (9) into the equivalent condition (6) is
e	ab ¼ �V �1
abijðC2

ijmn � C1
ijmnÞe0Mn ð10Þ
where V �1
abij is the inverse of Vijab defined by
Vijab ¼ ð1� f ÞðC2
ijmn � C1

ijmnÞSmnab þ C1
ijab ð11Þ
Since all inhomogeneities are of the same shape with the same material properties, the average of equivalent

eigenstrain e	mn in Xk is the same as that over X. Consequently, the average value over Xk is identical with

that over X, namely, hemniXk
¼ hemniX. Then, the overall stress hrijiC of the composite by averaging those of

the inhomogeneities and the matrix is defined as
hrijiC ¼ r0
ij þ ð1� f ÞhrijiM þ f hrijiX ð12Þ
Substituting Eqs. (3), (4) and (7)–(9) into (12), yields
hrijiC ¼ Cijmnðe0mn � f e	mnÞ ð13Þ
Furthermore, several steps of manipulation the Eq. (13) reduces to
hriji ¼ Cijmne
0
mn ð14Þ
where the effective elastic moduli Cijmn are obtained as
Cijmn ¼ C1
ijab Iabmn

h
þ fV �1

abqr

�
C2
qrmn � C1

qrmn

�i
ð15Þ
The above results are based upon the assumption that the principal axes of the inhomogeneity coincide with

the crystalline directions of the matrix (Huang and Kuo, 1996). For a spatially oriented inclusion in a

generally anisotropic medium, its orientation can be described by three Euler angles h, / and x as depicted

in Fig. 2. Suppose that u1, u2 and u3 are the unit vectors in the ðx; y; zÞ coordinates and u1, u2 and �uu3 are the
unit vectors in the ðx; y; zÞ coordinates, respectively. The overbar denotes quantities associated with the



Fig. 2. Representation of Euler angles.
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principal directions ðx; y; zÞ of the inclusion. The relations between these two sets of unit vectors can be

expressed as
u1
u2
u3

8<
:

9=
; ¼ ½k�

u1
u2
u3

8<
:

9=
; ð16Þ
where [k] is the direction cosine matrix. According to the above definition of the rotational angles, the

matrix is then given by
½k� ¼
mpr � ns npr þ ms �qr
�mps� nr mr � nps qs

mq nq p

2
4

3
5 ð17Þ
where m ¼ cosðhÞ, n ¼ sinðhÞ, p ¼ cosð/Þ, q ¼ sinð/Þ, r ¼ cosðxÞ, and s ¼ sinðxÞ.
For a randomly oriented fiber reinforcement composite, the effective moduli depend on the fiber ori-

entation distribution and can be defined by the following integration
Eijmn ¼
Z 2p

0

Z p

0

Z 2p

0

Cijmnðh;/;xÞqðh;/;xÞ sin/dxd/dh ð18Þ
where qðh;/;xÞ is the probability density function of the fibers and sin/ is to account for the surface area

of a sphere, and Cijmnðh;/;xÞ ¼ kikkjlkmpknqCklpq.
If the fibers are uniformly distributed over the given region as shown in Fig. 3, then the probability

density function qðh;/;xÞ is constant over the region and the corresponding distribution region is defined

by
�h0 6 h6 h0;
p
2
� /0 6/6

p
2
þ /0; 06x6 2p ð19Þ
where h0 and /0 are prescribed values and x is given so that any fiber is free to rotate with respect to its

direction. Then, the corresponding density function is found to be
qðh;/;xÞ ¼ 1

8ph0 sin/0

ð20Þ



Fig. 3. Fiber distributions in a preferred direction.
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Thus, Eq. (18) becomes
Eijmn ¼
1

8ph0 sin/0

Z 2p

0

Z p

0

Z 2p

0

Cijmnðh;/;xÞ sin/dxd/dh ð21Þ
The explicit result of the integration in Eq. (21) can be obtained for any given h0, /0, and x0, since the
solution for the effective elastic moduli Cijmnðh;/;xÞ of the composite can be obtained explicitly.

Three special cases of fiber orientations are considered in the present study and they are

Case 1: h0 ! 0 and /0 ! 0. It represents the special case in which all fibers are aligned and parallel to the

x axis and fibers are free to rotate only with respect to three axial directions. The nonzero terms are
E11 ¼ E33; E22 ¼
C11 þ C12

2
; E12 ¼ E13 ¼ C12

E23 ¼ C12; E44 ¼ C66; E55 ¼ E66 ¼ C44

ð22Þ
It can be shown that the composite includes only five independent elastic constants. This implies that

yz-plane is the plane of isotropy and the composite is macroscopically homogeneous and transversely

isotropic.
Case 2: h0 ¼ p and /0 ! 0. It represents the case in which the fibers are uniformly lying in the xy-plane

and it is therefore a two dimensional in-plane distribution. The nonzero terms are
E11 ¼ E22 ¼ E33 ¼
1

2
C11 þ

1

2
C33 �

1

8
H ; E12 ¼ C13 þ

1

8
H

E23 ¼ E13 ¼
1

2
C13 þ

1

2
C12; E44 ¼ E55 ¼

C44 þ C66

2

E66 ¼
1

2
C44 þ

1

8
H

ð23Þ
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where H ¼ C11 þ C33 � 2C23 � 4C44. It can be readily shown that xy-plane is the plane of isotropy and the

composite is transversely isotropic with respect to z axis.
Case 3: h0 ¼ p and /0 ! p

2
. It represents the case in which fibers are uniformly distributed in all

directions, which may be termed as completely random distribution. The composite behavior should be
independent of direction or the composite is isotropic. The nonzero terms are
E11 ¼ E22 ¼ E33 ¼
1

3
ð2C11 þ C33Þ �

2

15
H

E12 ¼ E23 ¼ E13 ¼
1

3
ð2C13 þ C12Þ þ

1

15
H

E44 ¼ E55 ¼ E66 ¼
1

3
ð2C44 þ C66Þ þ

1

15
H

ð24Þ
Due to symmetric distribution of fiber orientation, the composite as a whole is macroscopically isotropic.

2.2. Equations of motion

Employing the first-order shear deformation theory, the displacement field at a point in the composite

laminated plate is expressed as
Uðx; yÞ ¼ u0ðx; yÞ þ zhxðx; yÞ
V ðx; yÞ ¼ v0ðx; yÞ þ zhyðx; yÞ
W ðx; yÞ ¼ w0ðx; yÞ

ð25Þ
where u0ðx; yÞ, v0ðx; yÞ, w0ðx; yÞ are the displacement at a point on the mid-plane of the plate, and hxðx; yÞ,
hyðx; yÞ are the rotations of xz and yz planes, respectively. The strain displacement relations due to von-

Karman nonlinear kinematics are given as
e ¼ e0 þ zj ð26Þ
where
e ¼ ½ ex ey cxy cyz cxz �T

e0 ¼ el0 þ enl0

el0 ¼ ½ u0;x v0;y u0;y þ v0;x w0;y þ wy w0;x þ wx �T

enl0 ¼ 1
2
ðw0;xÞ2 1

2
ðw0;yÞ2 w0;xw0;y 0 0

h iT
j ¼ ½wx;x wy;y wx;y þ wy;x 0 0 �T

ð27Þ
where superscripts l and nl stands for linear and nonlinear, respectively.

The fiber reinforced composite plate with n layers is assumed to be rectangular with dimensions a, b, and
total thickness h. The origin of the coordinates is at the center of the plate. The constitutive equation for an

orthotropic lamina with plane stress condition and transverse shear is given by
rx
ry
sxy
syz
sxz

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼

E11 E12 E16 0 0

E12 E22 E26 0 0

E16 E26 E66 0 0

0 0 0 E44 E45

0 0 0 E45 E55

2
666664

3
777775

ex
ey
cxy
cyz
cxz

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð28Þ
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The force and moment resultants of a composite laminated plate made up of n layers of orthotropic lamina

are expressed as
Nx

Ny

Nxy

Mx

My

Mxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

2
6666664

3
7777775

u0;x þ 1
2
ðw0;xÞ2

v0;y þ 1
2
ðw0;yÞ2

u0;y þ v0;x þ w0;xw0;y

wx;x

wy;y

wx;y þ wy;x

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð29Þ

Qy

Qx

� �
¼ A44 A45

A45 A55

� �
cyz
cxz

� �
ð30Þ
The laminate stiffness coefficients (Aij;Bij;Dij) in terms of the reduced stiffness coefficients ðEijÞk given in

Eq. (21), for the layers k ¼ 1; 2; . . . ; n, are defined as
ðAij;Bij;DijÞ ¼
Xn
k¼1

Z zk

zk�1

ð1; z; z2ÞðEijÞk dz ði; j ¼ 1; 2; 6Þ ð31Þ

Aij ¼
Xn
k¼1

kikj

Z zk

zk�1

ðEijÞk dz ði; j ¼ 4; 5Þ ð32Þ
where k24 ¼ 5
6
and k25 ¼ 5

6
are shear correction factors.

Using the Hamilton�s principle, the equations of motion of the plate subjected to transient loading can be

derived and are compactly expressed in nondimensional form as
ðLa þ Lb þ LcÞdþ p ¼ Lq
€dd ð33Þ
where
La ¼ La1
o2

ox2
þ La2

o2

oy2
þ La3

o2

oxoy
þ La4

o

ox
þ La5

o

oy
þ La6

Lb ¼ Lb1
o2

ox2
þ Lb2

o2

oy2
þ Lb3

o2

oxoy

Lc ¼ Lc1
o2

ox2
þ Lc2

o2

oy2
þ Lc3

o2

oxoy

d ¼ ½ u v w wx wy �T

p ¼ ½ 0 0 q 0 0 �T

ð34Þ
The 5 · 5 matrices Lai, Lbi, Lci, Ld , and Lq appearing in the preceding equations are given in Appendix A.

2.3. Boundary conditions

The clamped or simply supported boundary conditions at the edges of the plate are expressed as
Clamped ðCÞ : At x ¼ �a=2 and a=2; u ¼ v ¼ w ¼ wx ¼ wy ¼ 0

At y ¼ �b=2 and b=2; u ¼ v ¼ w ¼ wx ¼ wy ¼ 0

Simply supported ðSÞ : At x ¼ �a=2 and a=2; u ¼ v ¼ w ¼ Mx ¼ wy ¼ 0

At y ¼ �b=2 and b=2; u ¼ v ¼ w ¼ wx ¼ My ¼ 0
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3. Method of solution

A general function uðx; yÞ is approximated in space domain by finite degree Chebyshev polynomials

(Shukla and Nath, 2000) as
uðx; yÞ ¼ d
XM
i¼0

XM
j¼0

uijTiðxÞTjðyÞ ð35Þ
where
d ¼ 0:25 if i ¼ 0 and j ¼ 0

d ¼ 0:5 if i ¼ 0 and j 6¼ 0 or i 6¼ 0 and j ¼ 0

d ¼ 1 otherwise
The spatial derivative of a general function uðx; yÞ can be expressed as
urs
;xy ¼ d

XM�r

i¼0

XN�s
j¼0

urs
ij TiðxÞTjðyÞ ð36Þ
where r and s are the order of derivatives with respect to x and y, respectively. Using the recurrence relations

(Fox and Parker, 1968), the derivative function urs
ij is evaluated as
urs
ði�1Þj ¼ urs

ðiþ1Þj þ 2iuðr�1Þs
ij

urs
iðj�1Þ ¼ urs

iðjþ1Þ þ 2jurðs�1Þ
ij

ð37Þ
The displacement functions and their derivatives can be approximated by finite degree Chebyshev poly-

nomials using Eqs. (35)–(37).

The nonlinear terms appearing in the equations of the motion of the plate due to the product of the
dependent variables are linearized at any step of marching variable using quadratic extrapolation tech-

nique. A typical nonlinear function Gðx; yÞ at step J is expressed as
GJ ¼ d
XM�r

i¼0

XN
j¼0

ur
ijTiðxÞTjðyÞ

" #
J

� d
XM
i¼0

XN�s
j¼0

us
ijTiðxÞTjðyÞ

" #
J

ð38Þ
where
ðuijÞJ ¼ g1ðuijÞJ�1 þ g2ðuijÞJ�2 þ g3ðuijÞJ�3 ð39Þ
During initial steps of marching variables, the coefficients g1, g2, and g3 of the quadratic extrapolation

scheme of linearization take the following values
J ¼ 1 : g1 ¼ 1; g2 ¼ 0; g3 ¼ 0

J ¼ 2 : g1 ¼ 2; g2 ¼ �1; g3 ¼ 0

J P 3 : g1 ¼ 3; g2 ¼ �3; g3 ¼ 1
Several implicit and explicit schemes of time marching have been used for analyzing dynamic problems. The

most common implicit schemes are: Houbolt, Newmark-b, and Wilson-h. Stricklin et al. (1971) have re-

ported that Houbolt scheme is considered to be best in few studies and Johnson (1966) has shown that it is
unconditionally stable for linear problems. However, the Houbolt scheme contaminate the results by arti-

ficial damping (Bathe and Wilson, 1976). In the present study, Houbolt implicit time marching scheme
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(Houbolt, 1950) is employed to evaluate the inertia terms Lq
€dd in the governing equations of motion. At time

step J , the general acceleration ðu;ssÞJ is evaluated as
ðu;ssÞJ ¼ ðb1uJ þ b2uJ�1 þ b3uJ�2 þ b4uJ�3 þ b5Þ=ðDs2Þ ð40Þ
where s is the nondimensional time period and the Houbolt coefficients bi�s for step loading at different time

steps are given as
b1 ¼ 6; b2 ¼ 0; b3 ¼ 0; b4 ¼ 0; b5 ¼ �2QDs2 for J ¼ 1

b1 ¼ 2; b2 ¼ �4; b3 ¼ 0; b4 ¼ 0; b5 ¼ �QDs2 for J ¼ 2

b1 ¼ 2; b2 ¼ �5; b3 ¼ 4; b4 ¼ 0; b5 ¼ 0 for J ¼ 3

b1 ¼ 2; b2 ¼ �5; b3 ¼ 4; b4 ¼ �1; b5 ¼ 0 for J P 3
The displacement functions and loading can be approximated by finite degree Chebyshev polynomials as

in Eq. (35) and substituting them into Eq. (33) and using the Eqs. (36)–(40), the nonlinear differential
equations are linearized and discretized in space and time domain. In the present study total linearization

by evaluating the nonlinear terms at each step of marching variable and adding them to the load vector is

adopted. Thus the nonlinear differential equation is converted into a system of linear algebraic equations,

which are expressed as
XM�2

i¼0

XN�2

j¼0

Fkðuij; vij;wij;wxij;wyij; PijÞTiðxÞTjðyÞ ¼ 0 ðk ¼ 1; 5Þ ð41Þ
Similarly the appropriate boundary conditions are discretized.

The total number of unknown coefficients is 5ðM þ 1ÞðN þ 1Þ. Collocating the zeroes of Chebyshev

polynomials, 5ðM � 1ÞðN � 1Þ algebraic equations are generated from Eq. (41). Similarly the CCCC (all

edges clamed) and CCSS (two opposite edges clamped and two simply supported) boundary conditions

generates ð10M þ 10N þ 20Þ, ð10M þ 10N þ 18Þ algebraic equations, respectively. Total number of equa-

tions become 5ðM þ 1ÞðN þ 1Þ þ 20 and 5ðM þ 1ÞðN þ 1Þ þ 18 for CCCC and CCSS boundary conditions,

respectively, which are more than the number of unknown coefficients to be evaluated. The system of linear

equations is written in matrix form as
Ad ¼ p ð42Þ
To ensure the uniqueness of the solution of Eq. (42) multiple regression analysis based on least square error

norm is carried out. Finally, the system of linear equations is expressed in matrix form as
d ¼ ðATAÞ�1
ATp ð43Þ
The coefficients of the displacement vectors are evaluated at each step and from which using Eq. (35) the

displacement at any point in the plate is computed.
4. Results and discussion

In the present study, the nonlinear governing equations of motion of composite laminated rectangular

plates containing spatially oriented short fibers and subjected to time dependent uniform transverse loading

are solved using the fast converging double Chebyshev polynomials and Houbolt time marching scheme. In

order to have a check on the accuracy and stability of the present methodology of the solution, spatial and
temporal convergence studies are carried and are shown in Figs. 4 and 5, respectively. It is found that nine

terms expansion of the variables in Chebyshev series and an increment of 0.1 for nondimensional time s are



Fig. 4. Spatial convergence of the transverse central displacement of [0/90/0/90] CCCC plate (a3=a1 ¼ 4, f ¼ 0:1, b ¼ 120, Case 1,

Ds ¼ 0:1Þ.

Fig. 5. Temporal convergence of the transverse central displacement of [0/90/0/90] CCCC plate (a3=a1 ¼ 4, f ¼ 0:1, b ¼ 120, Case 1).
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sufficient to yield satisfactory results. An iterative approach with relative convergence criteria of 0.01% of

each coefficient at every iteration across each step is employed. The present methodology is also validated

by comparing the plate center displacement (Wc) and moment of a thin isotropic simply supported plate

under uniform transverse dynamic loading presented by Akay (1980) using the finite element method and
shown in Table 1. It is observed that the results are in good comparison.

The numerical results for E-glass/Epoxy fiber reinforced laminates are presented. The elastic properties

used for the calculations are C1
11 ¼ 8:23 GPa, C1

12 ¼ 4:24 GPa, m1 ¼ 0:34 for epoxy matrix, and C2
11 ¼ 83:34

GPa, C2
12 ¼ 23:51 GPa, m2 ¼ 0:22 for E-glass fibers. It is assumed that all layers of the laminated plate have



Table 1

Comparison of central deflection and moment of thin isotropic plate (a ¼ 243:8 cm, h ¼ 0:635 cm, m ¼ 0:25; E ¼ 7:031� 105 kg/cm2,

q ¼ 2:547� 10�6 kg s2/cm4, qðx; y; tÞ ¼ 4:882� 10�4 kg/cm2)

Load level Center

Wc (Max) (cm) Mx (Max) (kg cm/cm)

Present Akay (1980) Present Akay (1980)

q 0.5781 0.6014 1.9248 1.9704

5q 1.2139 1.2607 3.7885 3.6149

10q 1.6694 1.6337 5.7436 5.4295
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the same thickness and fiber volume fraction. The nondimensional uniform step load Q ¼ 50 is taken in the
study for all the cases. The nonlinear dynamic responses of composite cross-ply and angle-ply laminated

plates with spatially oriented short fibers are presented for different fiber volume fraction, fiber aspect ratio,

and fiber orientation in the composites.

Figs. 6–9 show the effect of fiber orientation on the central displacement (Wc) response of four layers

antisymmetric cross-ply [0/90/0/90], symmetric cross-ply [0/90/90/0], antisymmetric angle-ply [45/)45/45/
)45], and unsymmetric [0/15/30/45] laminated plates with fiber volume fraction f ¼ 0:1 and fiber aspect

ratio a3=a1 ¼ 4, respectively. It is observed that maximum peak transverse central deflection is lowest for

fiber orientation Case 3, when the fibers are completely randomly distributed for all the four laminated
composite plates. For fiber orientation Cases 1 and 2, it is almost same. The effect of uniform distribution of

the fibers in the composites on the nonlinear dynamic response is more than other fiber distributions.

The effect of fiber aspect ratio (a3=a1) on the nonlinear displacement response of a four layers anti-

symmetric cross-ply laminated CCCC square plate with fiber volume fraction f ¼ 0:1, fiber orientation

Case 1 and plate span to thickness ratio b ð¼ a=hÞ ¼ 40 is shown in Fig. 10. It is observed that with increase

in the fiber aspect ratio the resistance of the composite plate against transient loading increases and the

amplitude of the motion of the plate is least for composite containing long fibers (a3=a1 ¼ 32) and highest

for composite containing short fibers (a3=a1 ¼ 2). However, the displacement responses corresponding to
Fig. 6. Effect of fiber orientation on the dynamic response of four layers antisymmetric cross-ply CCCC plate (a3=a1 ¼ 4, f ¼ 0:1,

b ¼ 20).
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Fig. 7. Effect of fiber orientation on the dynamic response of four layers symmetric cross-ply CCCC plate (a3=a1 ¼ 4, f ¼ 0:1, b ¼ 40).

0 20 40 60 80 100
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
CCCC, 45/-45/45/-45,a/h=40, f =0.1, a3/a1=4Case1

Case2
Case3

W
c

τ

Fig. 8. Effect of fiber orientation on the dynamic response of four layers antisymmetric angle-ply [45/)45/45/)45] CCCC plate

(a3=a1 ¼ 4, f ¼ 0:1, b ¼ 40).
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fiber aspect ratio 16 and 32 are almost same indicating that at this value of the fiber aspect ratio, the fibers

in the composites behave as long fibers.

Fig. 11 depicts the effect of fiber volume fraction in the fiber orientation Case 1 containing short fibers
(a3=a1 ¼ 4) on the dynamic response of the laminated composite [0/90/0/90] CCCC plate (a=h ¼ 40). It is
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Fig. 9. Effect of fiber orientation on the dynamic response of four layers unsymmetrically laminated [0/15/30/45] CCSS plate (a3=a1 ¼ 4,

f ¼ 0:1, b ¼ 20).
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Fig. 10. Effect of fiber aspect ratio on the dynamic response of four layers antisymmetric cross-ply CCCC plate (f ¼ 0:1, b ¼ 40,

Case 1).
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observed as expected that with increase in the fiber volume fraction the amplitude of the plate motion
decreases but the frequency of the motion remains almost same.

Fig. 12 reveals that the effect of lamination scheme in case of composite laminated plate containing short

fibers with fiber volume fraction f ¼ 0:1 and fiber orientation Case 1 on the nonlinear displacement re-

sponse of the CCSS square plate (a=h ¼ 20). It is observed that maximum peak displacement and frequency

of the motion is almost same for cross-ply and angle-ply symmetric, antisymmetric and unsymmetric
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Fig. 11. Effect of fiber volume fraction on the dynamic response of four layers antisymmetric cross-ply CCCC plate (a3=a1 ¼ 4, b ¼ 40,

Case 1).
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Fig. 12. Effect of lamination scheme on the dynamic response of CCSS plate (a3=a1 ¼ 4, f ¼ 0:1, b ¼ 20, Case 1).
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laminated plates. The lamination scheme does not affect the displacement response in case of composite

with short fibers aligned such that the composite is macroscopically homogeneous and transversely iso-

tropic.
Fig. 13 shows the effect of plate span to thickness ratio on the transient displacement response of the [0/

90/0/90] CCCC plate with short fibers aligned and parallel to the x axis which are free to rotate only with

respect to three axial directions. As in the case of composites with long fibers, the frequency of the motion

increases with decrease in the plate span to thickness ratio. However, the amplitude remains almost same.
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Fig. 13. Effect of plate thickness ratio a=h on the dynamic response of four layers antisymmetric cross-ply CCCC plate (a3=a1 ¼ 4,

f ¼ 0:1, Case 1).
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5. Conclusions

The nonlinear dynamic responses for laminated composite plates composed of spatial short fibers
subjected to uniform transverse transient loading are obtained. It is observed that with increase in the short

fiber volume fraction, the amplitude decreases but the frequency does not change. It is also found that

amplitude of the motion is higher for short fibers and it decreases when the fibers in the composite are long.

The fibers orientation in the composites with spatial short fibers influence the response of the plate and it is

found that the maximum peak displacement of the plate is lower when the fibers are uniformly distributed

in the composites, i.e., completely random distribution of short fibers. However, no significant difference in

the displacement response is observed in case of symmetric, antisymmetric, unsymmetric cross-ply, and

angle-ply laminated plate with short fibers.
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Appendix A

The nondimensional parameters appearing in the governing equations are defined as
k ¼ a
b
; b ¼ a

h
; x ¼ 2X

a
; y ¼ 2Y

b

u ¼ u0
h
; v ¼ v0

h
; w ¼ w0

h
; Nx ¼

Nxb
A11
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Ny ¼
Nyb
A22

; Nxy ¼
Nxyb
A66

; Mx ¼
Mxhb

2

D11

; My ¼
Myhb

2

D22

Mxy ¼
Mxyhb

2

D66

; Q ¼ qa4

C1
11h4

; s ¼ t

ffiffiffiffiffiffiffiffiffi
4A22

Pa2

r ðA:1Þ
The matrices defined in Eq. (34) are expressed as follows
La1 ¼

1 A16
A11

0 B11
hA11

B16
hA11

A16
A22

A66
A22

0 B16
hA22

B66
hA22

0 0 A55
A22

0 0

hB11
D11

hB16
D11

0 1 D16

D11

hB16
D22

hB66
D22

0 D16

D22

D66

D22

2
666666664

3
777777775

La2 ¼

k2A66
A11

k2A26
A11

0 k2B66
hA11

k2B26
hA11

k2A26
A22

k2 0 k2B26
hA22

k2B22
hA22

0 0 k2A44
A22

0 0

hk2B66
D11

hk2B26
D11

0 k2D66

D11

k2D26

D11

hk2B26
D22

hk2B22
D22

0 k2D26

D22
k2

2
6666666664

3
7777777775

La3 ¼

2kA16
A11

kðA12þA66Þ
A11

0 2kB16
hA11

kðB12þB66Þ
hA11

kðA12þA66Þ
A22

2kA26
A22

0 kðB12þB66Þ
hA22

2kB26
hA22

0 0 2kA45
A22

0 0

2hkB16
D11

hkðB12þB66Þ
D11

0 2kD16

D11

kðD12þD66Þ
D11

hkðB12þB66Þ
D22

2hkB26
D22

0 kðD12þD66Þ
D22

2kD26

D22

2
666666664

3
777777775

La4 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 bA55
2A22

bA45
2A22

0 0 � h2bA55
2D11

0 0

0 0 � h2bA45
2D22

0 0

2
66666664

3
77777775

La5 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 kbA45
2A22

kbA44
2A22

0 0 � h2kbA45
2D11

0 0

0 0 � h2kbA44
2D22

0 0

2
66666664

3
77777775
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La6 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 � h2b2A55
4D11

� h2b2A45
4D11

0 0 0 � h2b2A45
4D22

� h2b2A44
4D22

2
666664

3
777775

Lq ¼

A22
A11

0 0 A22R
A11Ph

0

0 1 0 0 R
Ph

0 0 1 0 0
A22Rh
D11P

0 0 A22I
D11P

0

0 A22Rh
D22P

0 0 A22I
D22P

2
666664

3
777775 ðA:2Þ
where P , R, and I are the normal, coupled normal rotary, and rotary inertia coefficients, respectively. They

are defined as
ðP ;R; IÞ ¼
Z h=2

�h=2
qð1; z; z2Þdz ðA:3Þ
The entries of the matrices Lb1, Lb2, Lb3, Lc1, Lc2, and Lc3 are zero except
Lb2ð1; 3Þ ¼
2k2

bA11

ðA66w;x þ kA26w;yÞ

Lb2ð2; 3Þ ¼
2k2

bA22

ðA26w;x þ kA22w;yÞ

Lb2ð3; 3Þ ¼
2k2

bA22

ðA12u;x þ kA26u;y þ A26v;x þ kA22v;yÞ

þ 2k2

hbA22

ðB12wx;x þ kB26wx;y þ B26wy;x þ kB22wy;yÞ

Lb2ð4; 3Þ ¼
2hk2

bD11

ðB66w;x þ kB26w;yÞ

Lb2ð5; 3Þ ¼
2hk2

bD22

ðB26w;x þ kB22w;yÞ

Lb3ð1; 3Þ ¼
2k

bA11

f2A16w;x þ kðA12 þ A66Þw;yg

Lb3ð2; 3Þ ¼
2k

bA22

fðA12 þ A66Þw;x þ 2kA26w;yg

Lb3ð3; 3Þ ¼
4k

bA22

fA16u;x þ kA66u;y þ A66v;x þ kA26v;yg

þ 1

h
ðB16wx;x þ kB66wx;y þ B66wy;x þ kB26wy;yÞ

Lb3ð4; 3Þ ¼
2hk
bD11

f2B16w;x þ kðB12 þ B66Þw;yg

Lb3ð5; 3Þ ¼
2hk
bD22

fðB12 þ B66Þw;x þ 2kB26w;yg
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Lc1ð3; 3Þ ¼
2

b2A22

fA11ðw;xÞ2 þ k2A12ðw;yÞ2 þ 2kA16w;xw;yg

Lc2ð3; 3Þ ¼
2k2

b2A22

fA12ðw;xÞ2 þ k2A22ðw;yÞ2 þ 2kA26w;xw;yg

Lc3ð3; 3Þ ¼
4k

b2A22

fA16ðw;xÞ2 þ k2A26ðw;yÞ2 þ 2kA66w;xw;yg

ðA:4Þ
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